70 research outputs found

    Transcriptome of the deep-sea black scabbardfish, Aphanopus carbo (Perciformes: Trichiuridae) : tissue-specific expression patterns and candidate genes associated to depth adaptation

    Get PDF
    Deep-sea fishes provide a unique opportunity to study the physiology and evolutionary adaptation to extreme environments. We carried out a high throughput sequencing analysis on a 454 GS-FLX titanium plate using unnormalized cDNA libraries from six tissues of A. carbo. Assemblage and annotations were performed by Newbler and InterPro/Pfam analyses, respectively. The assembly of 544,491 high quality reads provided 8,319 contigs, 55.6% of which retrieved blast hits against the NCBI nonredundant database or were annotated with ESTscan. Comparison of functional genes at both the protein sequences and protein stability levels, associated with adaptations to depth, revealed similarities between A. carbo and other bathypelagic fishes. A selection of putative genes was standardized to evaluate the correlation between number of contigs and their normalized expression, as determined by qPCR amplification. The screening of the libraries contributed to the identification of new EST simple-sequence repeats (SSRs) and to the design of primer pairs suitable for population genetic studies as well as for tagging and mapping of genes. The characterization of the deep-sea fish A. carbo first transcriptome is expected to provide abundant resources for genetic, evolutionary, and ecological studies of this species and the basis for further investigation of depth-related adaptation processes in fishes.Publisher PDFPeer reviewe

    Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean

    Get PDF
    Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Region of mitochondrial DNA and species-specific microsatellites. No evidence of significant structure was found throughout the North Atlantic, with both sets of molecular markers yielding the same results of overall homogeneity. We posit two non-mutually exclusive scenarios that can explain such outcome: i) substantial high gene flow among locations, possibly maintained by larval stages, ii) very large effective size of post-glacially expanded populations. The results can inform management strategies in this by-caught species, and contribute to the broader issue of biological connectivity in the deep ocean

    An Insightful Model to Study Innate Immunity and Stress Response in Deep‐Sea Vent Animals: Profiling the Mussel Bathymodiolus azoricus

    Get PDF
    Deep‐sea environments are, in some cases, largely unexplored ecosystems, where life thrives driven by the geochemical features of each location. Among these environments, chemosynthesis‐based ecosystems, in the Mid Atlantic Ridge, have an exclusive combination of high depth, high sulfur, and high methane concentrations. This is believed to modulate the biological composition of vent communities and influence the overall vent animal transcriptional activity of genes involved in adaptation processes to extreme environments. This opens, thus, the possibility of finding gene expression signatures specific to a given hydrothermal vent field. Regardless of the extreme physicochemical conditions that characterize deep‐sea hydrothermal vents, the animals dwelling around the vent sites exhibit high productivity and thus must cope with toxic nature of vent surrounding, seemingly deleterious to the animals, while developing surprisingly successful strategies to withstand adverse environmental conditions, including environmental microbes and mechanical stress whether ensuing from animal predation or venting activity. The deep‐sea vent mussel Bathymodiolus azoricus has adapted well to deep‐sea extreme environments and represents the dominating faunal community from hydrothermal vent sites in the Mid‐Atlantic Ridge, owing its successful adaptation and high biomasses to specialized exploitation of methane and sulfide sources from venting activity. Its extraordinary capabilities of adapting and thriving in chemosynthesis‐based environments, largely devoid of photosynthetic primary production and characterized by rapid geochemical regime changes are due to symbiotic associations with chemosynthetic bacteria within its large gills. In an attempt to understand physiological reactions in animals normally set to endure extreme deep‐sea environments, our laboratory has undertaken, for the last few years, a series of investigations, aimed at characterizing molecular indicators of adaptation processes of which components of the host defense system has received most attention. This study reviews recent advances on the characterization of molecules and genes participating in immune reactions, using in vivo and ex vivo models, to elucidate cellular and humoral defense mechanisms in vent mussels and the strategies they have adopted to survive under extreme environments

    Framing Cutting-Edge Integrative Deep-Sea Biodiversity Monitoring via Environmental DNA and Optoacoustic Augmented Infrastructures

    Get PDF
    Deep-sea ecosystems are reservoirs of biodiversity that are largely unexplored, but their exploration and biodiscovery are becoming a reality thanks to biotechnological advances (e.g., omics technologies) and their integration in an expanding network of marine infrastructures for the exploration of the seas, such as cabled observatories. While still in its infancy, the application of environmental DNA (eDNA) metabarcoding approaches is revolutionizing marine biodiversity monitoring capability. Indeed, the analysis of eDNA in conjunction with the collection of multidisciplinary optoacoustic and environmental data, can provide a more comprehensive monitoring of deep-sea biodiversity. Here, we describe the potential for acquiring eDNA as a core component for the expanding ecological monitoring capabilities through cabled observatories and their docked Internet Operated Vehicles (IOVs), such as crawlers. Furthermore, we provide a critical overview of four areas of development: (i) Integrating eDNA with optoacoustic imaging; (ii) Development of eDNA repositories and cross-linking with other biodiversity databases; (iii) Artificial Intelligence for eDNA analyses and integration with imaging data; and (iv) Benefits of eDNA augmented observatories for the conservation and sustainable management of deep-sea biodiversity. Finally, we discuss the technical limitations and recommendations for future eDNA monitoring of the deep-sea. It is hoped that this review will frame the future direction of an exciting journey of biodiscovery in remote and yet vulnerable areas of our planet, with the overall aim to understand deep-sea biodiversity and hence manage and protect vital marine resources

    Advancing fishery-independent stock assessments for the Norway lobster (Nephrops norvegicus) with new monitoring techn

    Get PDF
    The Norway lobster, Nephrops norvegicus, supports a key European fishery. Stock assessments for this species are mostly based on trawling and UnderWater TeleVision (UWTV) surveys. However, N. norvegicus are burrowing organisms and these survey methods are unable to sample or observe individuals in their burrows. To account for this, UWTV surveys generally assume that “1 burrow system = 1 animal”, due to the territorial behavior of N. norvegicus. Nevertheless, this assumption still requires in-situ validation. Here, we outline how to improve the accuracy of current stock assessments for N. norvegicus with novel ecological monitoring technologies, including: robotic fixed and mobile camera-platforms, telemetry, environmental DNA (eDNA), and Artificial Intelligence (AI). First, we outline the present status and threat for overexploitation in N. norvegicus stocks. Then, we discuss how the burrowing behavior of N. norvegicus biases current stock assessment methods. We propose that state-of-the-art stationary and mobile robotic platforms endowed with innovative sensors and complemented with AI tools could be used to count both animals and burrows systems in-situ, as well as to provide key insights into burrowing behavior. Next, we illustrate how multiparametric monitoring can be incorporated into assessments of physiology and burrowing behavior. Finally, we develop a flowchart for the appropriate treatment of multiparametric biological and environmental data required to improve current stock assessment methods

    Research Trends and Future Perspectives in Marine Biomimicking Robotics

    Get PDF
    Mechatronic and soft robotics are taking inspiration from the animal kingdom to create new high-performance robots. Here, we focused on marine biomimetic research and used innovative bibliographic statistics tools, to highlight established and emerging knowledge domains. A total of 6980 scientific publications retrieved from the Scopus database (1950–2020), evidencing a sharp research increase in 2003–2004. Clustering analysis of countries collaborations showed two major Asian-North America and European clusters. Three significant areas appeared: (i) energy provision, whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision, which presently hinders operation autonomy. In the research environment, identifying natural processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks while, at the same time, the natural designs must increasingly inform to optimize energy consumption

    Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale

    Get PDF
    Schistosoma spindale and Schistosoma indicum are ruminant-infecting trematodes of the Schistosoma indicum group that are widespread across Southeast Asia. Though neglected, these parasites can cause major pathology and mortality to livestock leading to significant welfare and socio-economic issues, predominantly amongst poor subsistence farmers and their families. Here we used mitogenomic analysis to determine the relationships between these two sympatric species of schistosome and to characterise S. spindale diversity in order to identify possible cryptic speciation. The mitochondrial genomes of S. spindale and S. indicum were assembled and genetic analyses revealed high levels of diversity within the S. indicum group. Evidence of functional changes in mitochondrial genes indicated adaptation to environmental change associated with speciation events in S. spindale around 2.5 million years ago. We discuss our results in terms of their theoretical and applied implications

    Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection

    Get PDF
    Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles-NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2

    Resolving taxonomic uncertainty in vulnerable elasmobranchs : are the Madeira skate (Raja maderensis) and the thornback ray (Raja clavata) distinct species?

    Get PDF
    Skates and rays constitute the most speciose group of chondrichthyan fishes, yet are characterised by remarkable levels of morphological and ecological conservatism. They can be challenging to identify, which makes monitoring species compositions for fisheries management purposes problematic. Owing to their slow growth and low fecundity, skates are vulnerable to exploitation and species exhibiting endemism or limited ranges are considered to be the most at risk. The Madeira skate Raja maderensis is endemic and classified as ‘Data Deficient’ by the IUCN, yet its taxonomic distinctiveness from the morphologically similar and more wide-ranging thornback ray Raja clavate is unresolved. This study evaluated the sequence divergence of both the variable control region and cytochrome oxidase I ‘DNA barcode’ gene of the mitochondrial genome to elucidate the genetic differentiation of specimens identified as R. maderensis and R. clavate collected across much of their geographic ranges. Genetic evidence was insufficient to support the different species designations. However regardless of putative species identification, individuals occupying waters around the Azores and North African Seamounts represent an evolutionarily significant unit worthy of special consideration for conservation management

    Establishment of a coastal fish in the Azores : recent colonisation or suddenexpansion of an ancient relict population?

    Get PDF
    The processes and time scales associated with ocean-wide changes in the distribution of marinespecies have intrigued biologists since Darwin’s earliest insights into biogeography. The Azores, amid-Atlantic volcanic archipelago located more than 1000 km off the European continental shelf,offers ideal opportunities to investigate phylogeographic colonization scenarios. The benthopelagicsparid fish known as the common two-banded seabream (Diplodus vulgaris) is now relativelycommon along the coastline of the Azores archipelago, but was virtually absent prior to the 1990s.We employed a multiple genetic marker approach to test whether the successful establishment of theAzorean population derives from a recent colonization from western continental/island populationsor from the demographic explosion of an ancient relict population.Results from nuclear and mtDNA sequences show that all Atlantic and Mediterranean populationsbelong to the same phylogroup, though microsatellite data indicate significant genetic divergencebetween the Azorean sample and all other locations, as well as among Macaronesian, westernIberian and Mediterranean regions. The results from Approximate Bayesian Computation indicatethat D. vulgaris has likely inhabited the Azores for approximately 40 (95% C.I.: 5.5─83.6) to 52(95% C.I.; 6.32─89.0) generations, corresponding to roughly 80-150 years, which suggests nearcontemporary colonisation, followed by a more recent demographic expansion which could havebeen facilitated by changing climate conditions. Moreover, the lack of previous records of thisspecies over the past century, together with the absence of lineage separation and the presence ofrelatively few private alleles, do not exclude the possibility of an even more recent colonisationevent
    corecore